Article dans une revue
Titre :
Longtime behavior of a second order fine element scheme simulating the kinematic effects in liquid crystal dynamics
Auteurs :
Mouhamadou Samsidy Goudiaby, Ababacar Diagne, Léon Matar Tine
Résumé :
We consider an unconditional fully discrete finite element scheme for a nematic liquid crystal flow with different kinematic transport properties. We prove that the scheme converges towards a unique critical point of the elastic energy subject to the finite element subspace, when the number of time steps go to infinity while the time step and mesh size are fixed. A Lojasiewicz type inequality, which is the key for getting the time asymptotic convergence of the whole sequence furnished by the numerical scheme, is also derived.
Journal :
Communications on Pure and Applied Analysis
Volume :
20
Issue :
10
Pages ou Numéro article :
pp: 3499-3514
Année :
2021
DOI :
10.3934/cpaa.2021116
Date de publication :
01 October 2021
Lien de la publication :
Voir
ici